Home > News
Dosing of Artemisinin
Published:2023-05-24 Views:426

What is the Dosing of Artemisinin?

The WHO approved adult dose of co-artemether (artemether-lumofantrine) for malaria is 4 tablets at 0, 8, 24, 36, 48 and 60 hours (six doses).This has been proven to be superior to regimens based on amodiaquine.Artemesinin is not soluble in water and therefore Artemisia annua tea was postulated not to contain pharmacologically significant amounts of artemesinin.However, this conclusion was rebuked by several experts who stated that hot water (85oC), and not boiling water, should be used to prepare the tea. Although Artemisia tea is not recommended as a substitute for the ACT (artemisinin combination therapies) more clinical studies on artemisia tea preparation have been suggested.The artemesinins are not used for malaria prophylaxis (prevention) because of the extremely short activity of the drug. To be effective, it would have to be administered multiple times each day.

What is the Synthesis for Artemisinin?

In 2006 a team from Berkeley published an article claiming that they had engineered Saccharomyces cerevisiae microbes that can produce the precursor artemisinic acid. The synthesized artemisinic acid can then be transported out, purified and turned into a drug that they claim will cost roughly 0.25 cents per dose. Details of the formation of artemisinic acid involves a mevalonate pathway, expression of amorphadiene synthase, a novel cytochrome P450 monooxygenase (CYP71AV1) and its redox partner from A. annua. A three-step oxidation of amorpha-4,11-diene gives the resulting artemisinic acid.Amyris Biotechnologies is collaborating with UC Berkeley and the Institute for One World Health to further develop this technology.

Using seed supplied by Action for Natural Medicine (ANAMED), the World Agroforestry Centre (ICRAF) has developed a hybrid, dubbed A3, which can grow to a height of 3 m and which produces 20 times more artemisinin than wild varieties. In northwestern Mozambique, ICRAF is working together with a medical organisation, Médecins sans frontières (MSF), ANAMED and the Ministry of Agriculture and Rural Development to train farmers on how to grow the shrub from cuttings, and to harvest and dry the leaves to make artemisia tea. Cultivation of this crop may well prove a valuable niche market for Africa, given the strong demand for the plant from pharmaceutical laboratories.

The biosynthesis of artemisinin is expected to involve the mevalonate pathway (MVA) and the cyclization of FDP (farnesyl diphosphate). Although it is not clear whether the DXP (deoxyxylulose phosphate)pathway can also contribut 5-carbon precurosrs (IPP or/and DMAPP), as occurs in other sesquiterpene biosynthetic system. The routes from artemisinic alcohol to artemisinin remain controversial and they differ mainly in when the reduction step takes place. Both routes suggested dihydroartemisinic acid as the final precursor to artemisinin. Dihydroartemisinic acid then undergoes photoxidation to produce dihydroartemisinic acid hydroperoxide. Ring expansion by the cleavage of hydroeroxide and a second oxygen-mediated hydroperoxidation furnish the biosynthesis of artemisinin.


The total synthesis of Artemisinin can also be performed using basic organic reagents. In 1982, G. Schmid and W. Hofheinz published a paper showing the complete synthesis of artemisinin. Their starting material was (-)-Isopulegol (2) which as converted to methoxymethyl ether (3). The ether was hydroborated and then underwent oxidative workup to give (4). The primary hydroxyl group was then benzylated and the methoxymethyl ether was cleaved resulting in (5) which would be oxidized to (6). Next, the compound was protonated and treated with (E)-(3-iodo-1-methyl-1-propenyl)-trimethylsilane to give (7). This resulting ketone was reacted with lithium methoxy(trimethylsily)methylide to obtain two diastereomeric alcohols, (8a) and (8b). 8a was then debenzylated using (Li, NH3) to give lactone (9). The vinylsilane was then oxidized to ketone (10). The ketone was then reacted with fluoride ion that caused it to undergo desilylation, enol ether formation and carboxylic acid formation to give (11). An introduction of a hydroperoxide function at C(3) of 11 gives rise to (12). Finally, this underwent photooxygenation and then treated with acid to produce artemisinin.

#Artemisinin #SweetWormwoodExtract